High throughput 16S sequencing for human metagenomics

Bruce Birren

Subjects to sequences

Clinical Sites - BCM & WashU

Sequencing Centers BCM, Broad, JCVI & WashU

Independent protocols - inconsistent data

PC1&PC2 account for 69% of variation

Three different gut samples are gift of J. Gordon

Common protocols - consistent data

Contributions from lab and bioinformatic steps

MICROBIOM

Consistency across centers

Accuracy validation via mock community

Sources of Unclassified Reads

Sequencing Errors Significant in all seq. technology Quality filtering effective

Chimeric Reads Ability to detect Abundance Similarity Protocol

Chimera Slayer - Haas et. al Gen. Res. 2011 21:494-504

Chimera rates in 16S data sets

Samples	% Observed Chimera content				
	ABI3730	454 FLX Titanium			
	V1-V9	V1-V3	V3-V5	V6-V9	
еМС	5.99 ± 3.07	14.26±10.34	14.75±9.45	13.49±8.52	
gut	7.71±6.46	22.90±8.56	16.03±2.86	17.76±3.76	
oral	7.22±6.35	20.55±11.73	10.98 ± 4.01	9.10 ± 5.02	
skin	3.49±5.77	11.15±1.36	7.51±2.49	5.73±1.69	
vaginal	6.31±6.64	12.60±6.70	6.62±3.51	3.00±1.65	

Classifying reads from mock community

RDP classification

Classifying 'real' communities

Estimating diversity

Community composition within clinical samples

HUMAN

PROJECT

First 24 subjects V3-V5

Individual Variation in Community Composition

454V3-V5 sequence data

Defining a 'core' microbiome?

Comparison

Genus-level core

Defining a 'core' microbiome?

ComparisonGenus-level coreALL Samples from ALL SubjectsNo

Defining a 'core' microbiome?

Comparison	Genus-level core			
ALL Samples from ALL Subjects	No			
ALL Samples from Gut	Yes, Bacteroides			
ALL Samples from Nares	Yes, Corynebacterium			
ALL Samples from Oral Cavity	Yes, Streptococcus			
ALL Samples from Skin	No			
ALL Samples from Vagina	Yes, Lactobacillus			

Core abundance is highly variable

A 'relaxed' core definition

Cores across body sites

Cores across body sites

Core is small at any definition, body site specific Abundance of core members varies dramatically

How unique are organisms to particular body sites?

293 Total Genera

Earl, Givers

'Specialist' genera represent a tiny fraction of data

Fraction of total reads

Earl, Giver_{\$1}

'Specialist' genera represent a tiny fraction of data

97% of all reads belong to genera present in all five body sites!

Fraction of total reads

Earl, Giver s_1

16S data

Biology

16S data

WGS data

↓ Biology

High Quality Illumina assemblies

Genome	% GC	Length (Mb)	Contig #	Contig N50 (Kb)	Scaffold #	Scaffold N50 (Mb)	% Ref Covered	Scaffold Accuracy
E. coli_MG1655	51%	4.59	106	107	26	4.59	98.9%	100.0%
Streptococcus pneumoniae	40%	2.13	78	51	11	1.96	98.7%	99.6%
M. tuberculosis	66%	4.21	341	20	23	0.60	95.5%	96.1%

Gnerre et al. 2011 PNAS 108:1513-8

Illumina bacterial assembly in production

	% GC	Scaffold length (Mb)	# scaffolds	Scaffold N50 size (Mb)	# contigs	Contig N50 size (Kb)
Acinetobacter PLIH2624	11	3.02	0	2.25	85	81
Racteroides eggerthii 1, 2, 48EAA	41	4.55	12	0.04	76	131
Bacteroides sp 9 1 42FAA	44	5.64	29	0.85	66	214
Bifidobacterium bifidum NCIMB 41171	64	2.20	1	2.2	24	156
Clostridium inocuum 6_1_30	46	4.91	12	0.79	79	107
Coprobacillus sp. 8_2_54BFAA	34	3.80	9	3.59	64	146
Escherichia coli MG1655	52	4.61	6	4.08	80	110
Erysipelotrichaceae bacterium 21_3	46	4.83	9	1.61	124	78
Erysipelotrichaceae bacterium 6_1_45	46	4.39	8	0.55	59	141
Eubacterium sp. 3_1_31	40	3.03	7	2.21	59	118
Fusobacterium sp. 3_1_33	29	2.27	6	1.52	106	46
Fusobacterium sp. 4_1_13	31	2.20	9	0.5	280	12
Lactobacillus jensenii SJ-7A-US	37	1.71	8	0.95	71	43
Mycobacterium tuberculosis KZN MDR	66	4.28	7	2.8	234	31
Paenibacillus sp. 4_7_47FAA	43	4.15	18	1.08	96	85
Parabacteroides sp. D25	47	5.14	13	1.96	63	227
Staphylococcus aureus M0602	35	2.91	24	0.52	76	106
Streptococcus pneumoniae Tigr4	42	2.13	4	1.84	83	61
Treponema denticola F0402	40	2.72	5	2.33	50	119

Ave. scaffold N50 size: 1.72Mb +/- 1.0 Mb Ave. contig N50 size: 106kb +/- 57kb

Assemblies versus 'bags of genes'

Michael Fischbach, Michael Zimmermann, Katherine Lemon, Vanja Klepac-Ceraj

16S data

WGS data

↓ Biology

16S data

WGS data

t Other 'omes

Conclusions

- >17,000 samples, from well characterized normal subjects
- Common protocols yield consistent results
- Benchmark data accuracy, utility using positive controls
- Generated new tools and control data sets
- Defining community constituents and normal variation

Acknowledgements

Writing Group Members Jennifer Wortman

Ashlee Earl **Barb Methe** Candace Farmer Cesar Arze Craig Pohl David Dooling Dawn Ciulla Diana Tabbaa **Dirk Gevers Doyle Ward Edward Belter Elaine Mardis** Eli Venter Elizabeth Appelbaum Erica Sodergren George Weinstock Georgia Giannoukos Hongyu Gao

Joseph Petrosino Kathie Mihindukulasuriya Kelvin Li Kristine Wiley Laura Courtney Lucinda Fulton Lynn Carmichael Michael Feldgarden Michelle O'Laughlin Monika Bihan Otis Hall **Richard Wilson Robert Fulton** Shawn Leonard Shibu Yooseph Todd DeSantis Vincent Magrini Yanjiao Zhou

Sequencing Centers

Baylor College of Medicine Broad Institute J Craig Venter Institute Washington University

Data Analysis Coordination Center

University of Maryland Lawrence Berkeley Laboratories University of Colorado

Institutional Support

Jane Peterson Lita Proctor Sue Garges Maria Giovanni Tsega Belachew Shaila Chhaiba

and many more!

Detailed Conclusions

•Out of all currently recognized bacterial phyla, only a fraction (20%) found on the human body

•Body sites and sub-sites harbor distinct bacterial communities

•Body sites cluster when bacterial communities from different individuals are compared

•Clustering is driven by the presence of similar, but not identical communities

•The 'core' community at any body site is small, body site specific, and the abundance of core taxa varies greatly among individuals.

•The overwhelming majority of data belong to genera that are found (at varying frequency and abundance) at all five body sites.

•Haven't saturated the view of biodiversity among body after sampling 24 individuals; models suggest that we will saturate for most body sites after 300 individuals are sampled.

Conclusions

- Common protocols yield consistent results!
- Indicates potential difficulties that may preclude comparing data from different studies that employ different procedures (including. extraction, PCR amplification, sequencing, processing, classification)

Mapping sequencing error

I6S sequence position

Biogeography: Person-to-Person

Oral Cavity

Skin & Nares

Vagina Gut

Common informatic processing reduces variation

Phylogenetic placement of unclassified sequences

